Explore Geometry Art, Sacred Geometry and more!

Explore related topics

Penrose tilings are an example of the non-periodic tilings discussed in the last post. Recall that these are tilings that cover the entire infinite plane leaving neither gaps nor overlaps. Whats nice about these tilings is that the set of tiles used to construct the Penrose tilings only consists of two different basic shapes consisting of quadrilaterals.

Penrose tilings are an example of the non-periodic tilings discussed in the last post. Recall that these are tilings that cover the entire infinite plane leaving neither gaps nor overlaps. Whats nice about these tilings is that the set of tiles used to construct the Penrose tilings only consists of two different basic shapes consisting of quadrilaterals.

Jules Bourgoin's No.190: his last & one of the most complex. A is a decagon (red), B a group of rhombuses (green) + standard hexagons & bowties. But C is a larger decagonal star that seems not to fit.

Jules Bourgoin's No.190: his last & one of the most complex. A is a decagon (red), B a group of rhombuses (green) + standard hexagons & bowties. But C is a larger decagonal star that seems not to fit.

Mandala from the fourth simple nonperiodic tiling using pattern blocks, inflation level 2. (Original)

Mandala from the fourth simple nonperiodic tiling using pattern blocks, inflation level 2. (Original)

Patch Robinson Triangle

Patch Robinson Triangle

Pinterest
Search