Explore Escher Paintings, Mc Escher Artwork, and more!

escher_belvedere

De illusies van Escher

m.c. escher / "belvedere" 1958 / One of my favourite artists. I love his physical and mathematical explorations in art, as well as his intense drawing ability. --- Impossible Architecture by Escher

M. C. Escher. How my life feels at times, twisted and warped...

Escher artwork example—For more information about M. Escher, visit the comprehensive biography on Visual Impact Systems web site

65f1b08e156f9cd3edf6c4ef7fb45076.jpg (563×960)

65f1b08e156f9cd3edf6c4ef7fb45076.jpg (563×960)

Escher

エッシャーとは (エッシャーとは) [単語記事

Resultado de imagen para pintor escher

Resultado de imagen para pintor escher

Chris Worth è un ragazzo che all’età di 13 anni ha un #quoziente intellettivo pari a 177. Hai un'intelligenza superiore alla media? Scopri cosa ti aspetta: https://evoluzioneconilcoaching.wordpress.com/2015/10/16/hai-unintelligenza-superiore-alla-media-preparati-al-peggio/

Hai un’intelligenza superiore alla media? Preparati al peggio.

The best known example of Penrose stairs appears in the lithograph Ascending and Descending by Dutch artist M. Escher, where it is incorporated into a monastery where several monks ascend and descend an endless staircase.

Pavage de MC Escher

Escher's drawing, Angels, containing infinitely many points of exact symmetry.

Dit werk representeert een donkere en lichte kant. Aan de lichte kant vliegen dus donkere ganzen en aan de donkere kant dus lichte ganzen. Dit is in het leven ook zo. Hoe duister het leven ook mag blijken, er is altijd wel wat positiefs te zien. Deze mening over dit schilderij vond er dus erg mooi aan. Door een diepere betekenis. | M.C. Escher

Escher, M.C. Dutch, 1898 - 1972 Day and Night 1938 woodcut in black and gray, printed from two blocks image: x cm x 26 in.) sheet: x cm x 30 in. 303 Cornelius Van S.

M. C. Escher made a lifetime study of patterns and tilings, often, as here, with strange symmetries (starfish and seashells -both bivalves and gastropods). Escher was clearly delighted that a 5-symmetrical animal existed, and determined to overcome the mathematical impossibility of tiling a plane with fivefold symmetry. So the starfish fit into a rectangular pattern, and they form junctions at which either three or four animals touch arms.

Escher was clearly delighted that a animal existed. To overcome the mathematical impossibility of tiling a plane with fivefold symmetry, he designed this seamless pattern.

Pinterest
Search